## ELLIPSE

Ellipse is the set of points in the plane with the feature that the sum of the distance of any point of the two given points (focus) a constant number.

$r_{1}, r_{2}$ are the radius vectors and for each point is $r_{1}+r_{2}=2 a$ (constant number)
$F_{1}(-c, 0)$ is focus and $F_{2}(c, 0)$ is focus, where is $c^{2}=a^{2}-b^{2}$
$a-$ is large semi-axis and $2 a$ is the major axis
$b$-is small semi-axis and $2 b$ is the minor axis
$e=\frac{c}{a}$ is eccentricity $(\mathrm{e}<1)$
Main ellipse equation is : $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad$ or $\quad b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$

## Example 1.

Determine the equation of an ellipse, if fokus has coordinates $( \pm 3,0)$ and length of large axis is 12 .

## Solution:

$\mathrm{c}=3$.
Since $2 \mathrm{a}=12$ then $\mathrm{a}=6 .\left(a^{2}=36\right)$
Use $c^{2}=a^{2}-b^{2}$ to find b :
$c^{2}=a^{2}-b^{2}$
$3^{2}=6^{2}-b^{2}$
$9=36-b^{2}$
$b^{2}=36-9$
Substitution in the ellipse equation and $\frac{x^{2}}{36}+\frac{y^{2}}{27}=1 \quad$ here's the solution.
$b^{2}=27$

## Example 2.

Determine the equation of an ellipse containing the point $M(6,4)$ and $N(-8,3)$

## Solution:

Coordinates of given point we will replace in the ellipse equation, but it is better to use a form $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$
$M(6,4) \rightarrow b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$
$b^{2} 6^{2}+a^{2} 4^{2}=a^{2} b^{2}$
$36 b^{2}+16 a^{2}=a^{2} b^{2}$
$N(-8,3) \rightarrow b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$
$b^{2}(-8)^{2}+a^{2} 3^{2}=a^{2} b^{2}$
$64 b^{2}+9 a^{2}=a^{2} b^{2}$
comparing the left side of equality, we get:
$36 b^{2}+16 a^{2}=64 b^{2}+9 a^{2}$
$16 a^{2}-9 a^{2}=64 b^{2}-36 b^{2}$
$7 a^{2}=28 b^{2}$
$a^{2}=4 b^{2}$
Now go back to one of the two equal and replace the resulting value:
$a^{2}=4 b^{2}$
$64 b^{2}+9 a^{2}=a^{2} b^{2}$
$64 b^{2}+9 \cdot 4 b^{2}=4 b^{2} b^{2}$
$100 b^{2}=4 b^{4}$
$4 b^{4}-100 b^{2}=0$
$4 b^{2}\left(b^{2}-25\right)=0$
$b^{2}=25 \rightarrow a^{2}=4 \cdot 25 \rightarrow a^{2}=100$

Substituting this into equation, we get solution:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$\frac{x^{2}}{100}+\frac{y^{2}}{25}=1$

## Ellipse and line

Similarly as in the circle, to determine the mutual position of line and ellipses, solve the system of equations:
$y=k x+n$ and $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$

- If the system has no solution, then the line and the ellipse is not cut, that is $a^{2} k^{2}+b^{2}<n^{2}$
- If the system has two solutions, then line cut ellipse in two points $a^{2} k^{2}+b^{2}>n^{2}$
- If the system has one solution, line is tangent, and satisfies the contact condition:

$$
a^{2} k^{2}+b^{2}=n^{2}
$$

Note
If we seek an ellipse tangent line at a given point $\left(x_{0}, y_{0}\right)$ which belongs to the ellipse, we have formula:

$$
t: \frac{x \cdot x_{0}}{a^{2}}+\frac{y \cdot y_{0}}{b^{2}}=1
$$

## Example 3.

In intersecting points ellipse $x^{2}+3 y^{2}=28$ and line $5 x-3 y-14=0$ were constructed tangent. Find them.

## Solution:

$5 x-3 y-14=0 \quad$ find x from here
$x^{2}+3 y^{2}=28$
$x=\frac{3 y+14}{5} \rightarrow$ replace in second equation
$\left(\frac{3 y+14}{5}\right)^{2}+3 y^{2}=28$
$\frac{9 y^{2}+84 y+196}{25}+3 y^{2}=28$
$9 y^{2}+84 y+196+75 y^{2}=700$
$84 y^{2}+84 y-504=0$ $\qquad$
$y^{2}+y-6=0$
$y_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$y_{1}=2$
then

$$
y_{1}=2 \rightarrow x_{1}=\frac{3 \cdot 2+14}{5} \rightarrow x_{1}=4
$$

$y_{2}=-3$

$$
y_{2}=-3 \rightarrow x_{2}=\frac{3 \cdot(-3)+14}{5} \rightarrow x_{2}=1
$$

We got the points of intersection: $(4,2)$ and $(1,-3)$.
Since the points are on the ellipse we will use formula: $t: \frac{x \cdot x_{0}}{a^{2}}+\frac{y \cdot y_{0}}{b^{2}}=1$
First, the ellipse move in another form:
$x^{2}+3 y^{2}=28$
$\frac{x^{2}}{28}+\frac{3 y^{2}}{28}=1$
$\frac{x^{2}}{28}+\frac{y^{2}}{\frac{28}{3}}=1$
for $(4,2) \rightarrow t_{1}: \frac{x \cdot 4}{28}+\frac{y \cdot 2}{\frac{28}{3}}=1$
$t_{1}: 2 x+3 y-14=0$
for $(1,-3) \rightarrow t_{2}: \frac{x \cdot 1}{28}+\frac{y \cdot(-3)}{\frac{28}{3}}=1$
$t_{2}: x-9 y-28=0$

## Example 4.

Determine the parameter p so that the line $y+x+p=0 \quad$ represents the tangent line ellipses $2 x^{2}+3 y^{2}=30$

## Solution

Here we have to used the contact condition . First, arrange an ellipse and line .From them we read what we need...
$y+x+p=0$
$y=-x-p$

$$
\begin{aligned}
& 2 x^{2}+3 y^{2}=30 \quad \ldots \ldots \ldots \ldots . . . . . . /: 30 \\
& \frac{2 x^{2}}{30}+\frac{3 y^{2}}{30}=1 \\
& \frac{x^{2}}{15}+\frac{y^{2}}{10}=1 \rightarrow a^{2}=15 \quad \text { and } \quad b^{2}=10
\end{aligned}
$$

From here we have $k=-1$ and $n=-p$
contact condition:
$a^{2} k^{2}+b^{2}=n^{2}$
$15(-1)^{2}+10=(-p)^{2}$
$25=p^{2}$
$p_{1}=5$
$p_{2}=-5$

## Example 5.

The square is inscribed in an ellipse $\quad x^{2}+4 y^{2}=36$. Calculated area of the square.

## Solution

Here it is necessary to draw a picture and set the problem...


What can we see?
Line $y=x$ and $y=-x$ in the intersection of the ellipse given vertices of the inscribed square!

So, solve the system $\mathrm{y}=\mathrm{x}$ and $x^{2}+4 y^{2}=36$
$x^{2}+4 y^{2}=36$
$\underline{y=x}$
$x^{2}+4 x^{2}=36$
$5 x^{2}=36$
$x^{2}=\frac{36}{5} \rightarrow x_{1}=\frac{6}{\sqrt{5}}, x_{2}=-\frac{6}{\sqrt{5}}$

As $y=x$ and $y=-x$ we have that coordinates of the vertices are:

$$
A\left(\frac{6}{\sqrt{5}}, \frac{6}{\sqrt{5}}\right) ; B\left(\frac{6}{\sqrt{5}},-\frac{6}{\sqrt{5}}\right) ; C\left(-\frac{6}{\sqrt{5}},-\frac{6}{\sqrt{5}}\right) ; D\left(-\frac{6}{\sqrt{5}}, \frac{6}{\sqrt{5}}\right)
$$

Mark squares page with $a$. Its length, we get as the distance between points A and B ,for example.
$d(A, B)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$a=\sqrt{\left(\frac{6}{\sqrt{5}}-\frac{6}{\sqrt{5}}\right)^{2}+\left(-\frac{6}{\sqrt{5}}-\frac{6}{\sqrt{5}}\right)^{2}}$
$a=\sqrt{0+\left(-\frac{12}{\sqrt{5}}\right)^{2}}$
$a^{2}=\frac{144}{5}$
We know that the area of squares calculated by the formula

$$
\mathrm{A}_{\mathrm{a}}=a^{2}
$$

$\mathrm{A}_{\mathrm{a}}=\frac{144}{5}$

